End2Fire
End2Fire (End-to-end cost effective fire detection and protection system) is a platform for end-to-end fire protection, covering optimal (cost effective) deployment of cameras, detection component, localization algorithms, intelligent C&C functionalities (DSS) and conclusion drawing com-ponent. Hence, the end users that may be civil protection services, public authorities (e.g., smart city authorities) or large private industrial infrastructures can setup a low cost and fully functional solution for handling fire incidents in urban or rural spaces. The two axes of commercial innovation are: quality (early warning, accurate response, debriefing capability) and cost-effectiveness (open software, commodity hardware for detection, minimal deployment requirements). Both collaborating partners, Mobics and ClearCut (C4) have already developed parts of such platform (such as basic C&C functionality and camera-based fire detection) but some new components require joint effort and the aggregated know-how in order to be successfully implemented. Such components will enhance the existing solutions of the partners in new ways and will also lead to a new product, that no individual partner could deliver by itself. Other more generic C&C systems, are either not optimized for the fire risk, or are too expensive to deploy and operate. In the joint R&D tasks, Mobics will provide expertise just in knowledge technologies (ontologies and rules), while the Israeli company C4 in domain modeling, GIS and operations algorithms.
The project is co-funded by:
FIspace
MOBICS participates in the FIspace project with the task of implementing two applications for the Greenhouse Management Trial: the Crop Monitoring App and the Crop Analyzer App.
Crop Monitoring App is a mobile application with an intuitive user interface that will enable remote diagnosis of crop growing problems. The app will include features such as the following: greenhouse calendar, optimal photo shooting, information extraction from the photos, integration with other digital tools (i.e., microscopes) and guides for appropriate pesticide selection and successful disease management.
Crop Analyser App refers to a crop manager and analyser tool that enables remote diagnosis of crop diseases and analysis of other growing issues (e.g. pesticide spraying), communication between the interested parties and several decision support tools. Some advanced features are pattern recognition based on computer vision methods, retrieval of similar cases with reasoning techniques and a knowledge base that allows for multi-faceted search.
These applications will be fully integrated and also integrated with the core FIspace infrastructure. They will be evaluated during lab and field trials in terms of usability and greenhouse process improvements.
To learn more about FIspace visit the project site: www.fispace.eu
The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 604123
GINSEC
The goal of the GINSEC project is to build a pre-commercial prototype of a low-cost, accurate and reliable navigation system for professional drone market. Consumer-type navigation systems work quite well in general use despite the many practical problems that still affect them. Most noticeable in vehicle navigation are the slow time to first fix (up to a few minutes), poor or no availability (outages in tunnels or dense cities), slow dynamics and poor accuracy (enough to occasionally miss an exit) and lack of a heading indication. If these problems can be annoying to an occasional user, they may be critical to professional ones, especially if operating under emergency conditions (ambulance services, fire brigades). GINSEC aims at developing a navigation system that should solve these problems with various sensor configuration and fusion approaches:
- Redundant low-cost inertial units to improve dynamics and availability of navigation, possibly using a tightly coupled approach.
- Antenna arrays, to obtain heading estimation and beamforming to attenuate multi-path and interferers.
- Map-assisted navigation: map database is actively used in the navigation filter to improve accuracy over traditional (e.g. stay on road) approaches.
The GINSEC consortium consists of SMEs and RTD performers that are active in the GNSS/INS market. RTDs will mainly study and develop the data fusion algorithms for navigation, while the SMEs will develop, manufacture and test the prototype navigation system. The challenge is to implement and integrate all above technologies in the frame of limited size, weight and cost imposed by the drone market requirements. Through their collaboration, the partners aim to develop a navigation solution directly exploitable on various kinds of drones.
Project partners: ECLEXYS, Saphyrion, Laser Navigation, Consorci Institut De Geomatica, Brightcom Solutions, Istituto Nazionale Di Astrofisica
More info:
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 606644
iGuide
Cultural and nature tourism is a vital economic sector that contributes significantly to the country's gross domestic product. In order for Greece to increase the value of its tourism product against its competitors, not only infrastructure marketing and e-commerce services should be improved, but also novel advanced and unique information services have to be deployed. Despite the wealth of cultural sites and attractions in Greece, many of them are still unknown and unexploited. The Thrace region is an obvious example, where visiting unattended cultural or natural beauty sites where no information is available is a common situation.
To this end, we propose the development of iGuide, a system that aims at enabling a socially enriched mobile tourist guide service that will be accessible from smartphones. iGuide will address a much wider range of sites and attractions than existing solutions cover. iGuide's major targets for exploitation are historic and traditional settlements, sites of natural beauty or unattended sites where access to information is unavailable or not directly provided. The proposed service will allow the casual visitor to obtain information and guidance on site. In addition, active users can personally contribute to the content enrichment of the visiting places by uploading user-generated media (images, audio, videos, etc.) along with their personalized content about the acquired experience (comments, ratings, etc.).
At the same time, users will be able to receive supplementary added value location-based services and recommendations to enhance their visiting experience and facilitate their wandering in places of interest and their direct interaction with local provisions. To enable such a service and in order to improve the visitor's experience, iGuide targets in providing text-to-speech (narration) functionalities, rich multimedia content including real-time 3D graphics and a supporting back-end Web 2.0 informational portal.
Project partners: Athena Research and Innovation Center, Αthens Ιnformation Technology, Vodafone, Ιnnoetics, Riverland, The region of eastern Macedonia and Thrace.
The project is co-funded by:
MARIBRAIN
The full project title is "Ship' s Health Condition, Operational Status and Performance Remote Monitoring based on wireless sensor network and technical experience management system". The main goal of the project is to develop a smart wireless sensor network platform that can be used to monitor the status of a ship on a 24/7 basis, to apply condition based maintenance models and services to a maritime company, and to allow a maritime company to operate in an environment friendly way. Condition Monitoring (CM) creates a mechanism for objective feedback on the quality of any work which has been carried out. Focusing only on what needs to be maintained helps create minimal disruption to operations and fewer unnecessary tasks, in turn delivering a more effective maintenance process, improved reliability and business value. The potential benefits of using CM within a condition-based maintenance culture include: improved safety and reliability, optimized scheduling and maintenance costs, fewer unnecessary spares, strips downs and maintenance-induced failures, reduced uninsured risk. The platform to be developed will combine hardware and software that will allow a smart and easy way of monitoring of critical ship parameters in order to evaluate their operational status and their efficiency. The adaptability to any type of vessel, the easy expansion, the distributed intelligence, the high ROI and the low installation cost and time are the basic advantages that make our approach unique to the global market. The objectives of the project include the following:
- Development of new optical sensors for measuring critical parameters for monitoring the efficiency of the ship, such as fuel type indicators, exhaust analyzers and torque meters.
- Design of a wireless sensor network based on new intelligent multi-sensing devices and fully adapted to the ships’ environment.
- Development of a sophisticated experience management system for handling the collected data and automated diagnosis and prognosis software tools.
Project partners: Prisma Electronics, Kavala Institute of Technology, dept. of Electronics, CE.RE.TE.TH, National and Kapodistrian University of Athens, Institute of Communications and Computer Systems, CTI Diophantus, Danaos Management Consultants, ANEK.
The project is co-funded by: